Evidence of accurate logical reasoning in online sentence comprehension

34th Annual CUNY Conference on Human Sentence Processing

Maksymilian Dąbkowski¹, Roman Feiman² March 4, 2021

¹University of California, Berkeley, ²Brown University

Introduction

- what is the status of logic in thought?
- logic studies relations among propositions

Dictum de omni

All rats love to eat.

- \therefore All spotted rats love to eat.
 - do such schemata capture the nature of thought?

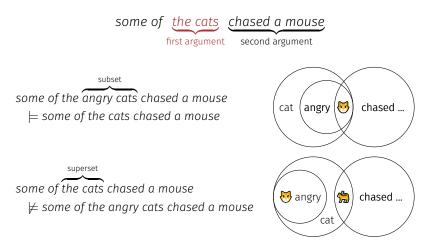
logic in psychology

- psychology has focused on difficulties in logical reasoning
 - Wason's (1968) selection tasks easier when ecologically valid (Cheng and Holyoak, 1985, 1989; Cheng, Holyoak, et al., 1986)
 - dual-process theories (Evans and Stanovich, 2013; Kahneman, 2011)

Α	\gg	В
Birds have an ulnar artery.		Birds have an ulnar artery.
∴ Robins have an ulnar artery.		∴ Penguins have an ulnar artery.
		Sloman (1993)

system 1 ... has little understanding of logic and statistics Kahneman (2011)

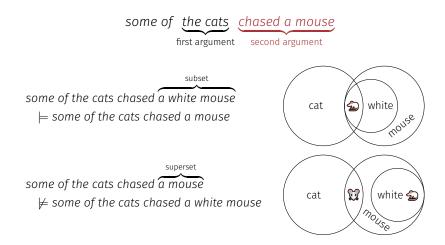
- formal semantics presupposes logical ability the logical notions are embedded in our deepest nature, in the very form of our language and thought Chomsky (1988, p. 99)
- linguists predict some logical thought as effortless as language
- can we find evidence for spontaneous logical computation?
- **entailment**: if *p* is true, then *q* is also true


Dictum de omni

All rats love to eat.

... All spotted rats love to eat.

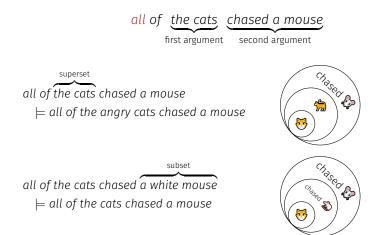
Entailment directions


some: the first argument

some, the first argument:

you can go from a subset to a larger set (angry cat \rightsquigarrow cat)

some: the second argument



some, the second argument:

you can go from a subset to a larger set (white mouse \rightsquigarrow mouse)

- *upward entailment*: can go from a subset to a larger set
- 1st arg of *some*: upward-entailing (angry cat \rightsquigarrow cat)
- 2nd arg of some: upward-entailing (white mouse → mouse)
- · downward entailment: can go from a superset to a smaller set

all: both arguments

all: downward-entailing on the 1st argument (cat \rightarrow angry cat), upward-entailing on the 2nd argument (white mouse \rightarrow mouse)

entailment direction by quantifier and argument

	SOME	NOT ALL	ALL	NONE
FIRST ARG	upward	upward	downward	downward
SECOND ARG	upward	downward	upward	downward

evidence for entailment computation

- presupposed by accounts of:
 - Gricean implicature computation
 - distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements
- can be challenged on empirical grounds
 - the distribution of NPIs is more complex (cf. Hoeksema, 2012)
- previous studies:
 - Deschamps et al. (2015): signature of quantifier's direction of entailment
 - Agmon et al. (2019): signatures of both negative polarity and downward entailment
- limitation: inferences tested indirectly

Hoeksema's (2012) 12 classes of polarity items

- 1. negation
- 2. yes/no-questions
- 3. WH-questions
- 4. comparatives of inequality
- 5. conditional clauses
- 6. restriction of universals
- 7. restriction of the only
- 8. restriction of superlatives
- 9. scope of only

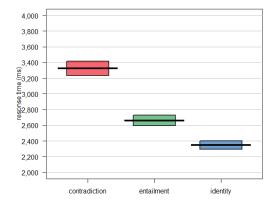
	1	2	3	4	5	6	7	8	9
Any	+	+	+	+	+	+	+	+	+
Ever	+	+	+	+	+	+	+	+	+
Ook maar	+	+	+	+	+	+	+	+	+
Minimizer	+	+	+	+	+	+	+	-	-
Remotely	+	+	+	+	+	+	+	-	+
At all	+	+	+	+	+	+	+	-	+
Adv. Any	+	+	+	+	+	+	+	-	+
Yet	+	+	-	+	+	-/+	+	+	+
Either	+	+	-	+	-	-	-	-	-
In X	+	-	-	+	-	-	+	+	-
Can help	+	+	+	+	+	-/+	-	-	-
Can blame	+	+	+	-	-	-	+	-	-
Kwaad kunnen	+	+	+	-	-	-	+	-	+
Need, etc.	+	+	+	+	-	-/+	+	-	+
Anymore (US)	+	-	-	-	-	-	+	-	-
Squat	+	-	-	-	-	-	+	-	-
Exactly	+	-	-	-	-	-	-	-	-
Meer/mehr	+	-	-	-	-	-	-	-	-
			_						

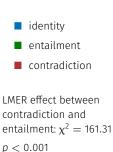
Methods

- three novel self-paced reading experiments
- tested for signatures of accurate inferences between quantified sentences
- experiment 1 involved detecting logical contradictions
- experiments 2 and 3 leveraged variable entailments of the first and second arguments of quantifiers to detect incorrect inferences
- \cdot preregistered design and analyses on OSF

Experiment 1

experiment 1


- \cdot tested whether speakers detect logical contradictions
- 400 participants on Amazon Mechanical Turk
- 12 target items displayed line by line
- 6 conditions differing in quantifiers


Test item

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT1</u> of the rats loved the food.
- (5) Now that they knew that <u>QUANT2</u> of the rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - measured variable: RT of the conclusion line (5)
 - $\cdot\,$ participants were asked unrelated comprehension questions
 - The researchers studied rodents. TRUE FALSE

	QUANT1	QUANT2
IDENTITY	SOME of the rats loved they knew that	t SOME of the rats
IDENTITY	not all of the rats loved they knew tha	t not all of the rats
ENTAILMENT	all of the rats loved they knew the	t SOME of the rats
ENTAILMENT	none of the rats loved they knew that	t not all of the rats
CONTRADICTION	none of the rats loved they knew that	t SOME of the rats
CONTRADICTION	all of the rats loved they knew the	t not all of the rats

experiment 1 results

Experiment 2

experiment 2

- same paradigm to detect subtler unlicensed inferences (n = 400)
- \cdot manipulated quantifiers and premise quantifier's 1^{st} arg

Test item

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that <u>QUANT</u> of the spotted rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - 4 quantifiers × 3 containment relations = 12 conditions
 - · 4 conditions: premise identical to (trivally entails) conclusion
 - 4 conditions: premise entails conclusion
 - · 4 conditions: premise does not entail conclusion
 - \cdot within quantifier, critical lines have identical lexical content

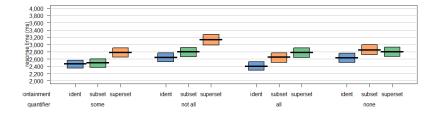
experiment 2 conditions, full

		SOME	NOT ALL	ALL	NONE
SUBSE	$T \rightarrow$	some of the male spotted rats loved the food. Now that	not all of the male spotted rats loved the food. Now that	all of the male spotted rats loved the food. Now that	None of the male spotted rats loved the food. Now that
of spotted r	ats \rightarrow	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that NONE of the Spotted rats
IDENTICA	$L \rightarrow$	SOME of the spotted rats loved the food. Now that they knew that SOME of	not all of the spotted rats loved the food. Now that	all of the spotted rats loved the food. Now that	NONE of the spotted rats loved the food. Now that they knew that NONE of
to spotted r	ats \rightarrow	the spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	the spotted rats
SUPERSE	$T \rightarrow$	SOME of the rats loved the food. Now that	not all of the rats loved the food. Now that	all of the rats loved the food. Now that	none of the rats loved the food. Now that
of spotted r	ats \rightarrow	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats

trivially entailed

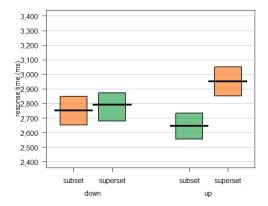
entailed

not entailed


	SOME	NOT ALL	ALL	NONE
SUBSET	entl'd	entl'd	¬entl'd	¬entl'd
IDENT	triv'l	triv'l	triv'l	triv'l
SUPERSET	¬entl'd	¬entl'd	entl'd	entl'd

trivially entailed

entailed


not entailed

experiment 2 results

trivial subset: male spotted rats ≺ spotted rats
 entailed ident: spotted rats ≺ spotted rats
 not entailed superset: rats ≺ spotted rats

experiment 2 results, quantifiers grouped by entailment

• entailed subset: male spotted rats \prec spotted rats

■ not entailed superset: rats ≺ spotted rats

containment (subset vs. superset) × entailment (up vs. down): $\chi^2 = 10.9$, p < 0.001

Experiment 3

 $\cdot\,$ manipulated quantifiers and premise quantifier's 2^{nd} arg

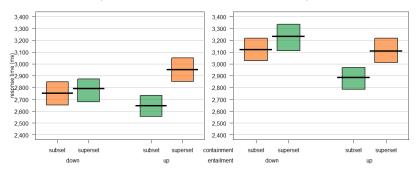
Test item

- (1) A group of scientists wanted to know what rats liked to eat.
- (2) They gave rats a choice of different meats,
- (3) as well as leafy and root vegetables, both fresh and frozen.
- (4) They discovered that <u>QUANT</u> of the rats ate ((frozen) leafy) vegetables.
- (5) Now that they knew that <u>QUANT</u> of the rats ate leafy vegetables,
- (6) they decided to issue a recommendation based on their findings.
 - 12 conditions, with different interactions of quantifier × containment relation

experiment 3 conditions, full

-		SOME	NOT ALL	ALL	NONE
รเ	JBSET $ ightarrow$	some of the rats ate frozen leafy veg- etables. Now that they knew that	not all of the rats ate frozen leafy veg- etables. Now that they knew that	all of the rats ate frozen leafy veg- etables. Now that they knew that	none of the rats ate frozen leafy veg- etables. Now that they knew that
ofle	eafy veg. $ ightarrow$	some of the rats ate leafy vegetables	not all of the rats ate leafy vegetables	all of the rats ate leafy vegetables	none of the rats ate leafy vegetables
IDEN	$TICAL \rightarrow$	SOME of the rats ate leafy vegetables . Now that they knew that	not all of the rats ate leafy vegetables. Now that they knew that	all of the rats ate leafy vegetables . Now that they knew that	none of the rats ate leafy vegetables . Now that they knew that
to le	eafy veg. $ ightarrow$	some of the rats ate leafy vegetables	not all of the rats ate leafy vegetables	all of the rats ate leafy vegetables	none of the rats ate leafy vegetables
SUPI	$ERSET \rightarrow$	SOME of the rats ate vegetables . Now that they knew that	not all of the rats ate vegetables. Now that they knew that	all of the rats ate vegetables . Now that they knew that	none of the rats ate vegetables . Now that they knew that
of le	eafy veg. $ ightarrow$	some of the rats ate leafy vegetables	not all of the rats ate leafy vegetables	all of the rats ate leafy vegetables	none of the rats ate leafy vegetables

trivially entailed


entailed

not entailed

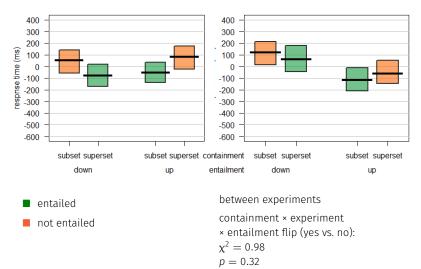
experiment 2 and 3 conditions, compared

exp. 2: 1 st arg of	SOME	NOT ALL	ALL	NONE
SUBSET IDENT SUPERSET	entl'd triv'l ∽entl'd	entl'd triv'l ∽entl'd		<mark>⊸entl'd</mark> triv'l entl'd
exp. 3: 2 nd arg of	SOME	NOT ALL	ALL	NONE
SUBSET IDENT SUPERSET	entl'd triv'l ¬entl'd	<mark>⊸entl'd</mark> triv'l entl'd		<mark>⊸entl'd</mark> triv'l entl'd

experiment 2 and 3 results

experiment 2

experiment 3

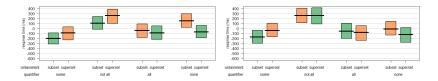

entailed

not entailed

experiment 3

containment (subset vs. superset) × entailment (up vs. down): $\chi^2 = 6.21$

experiments 2 and 3, partial residual graphs


experiment 2

experiment 3

experiment 2 and 3 partial residuals, by quantifier

experiment 2

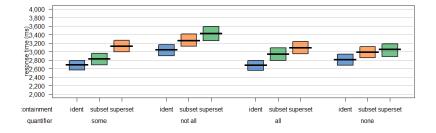
experiment 3

not entailed

Discussion

discussion

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition


it is assumed that people's intuitive logical knowledge emerges from a learning process in which key principles have been practiced to automaticity

De Neys and Pennycook (2019)

- consistent with some logic being naturally intuitive
 - natural logic in reasoning (e.g. Braine and O'Brien, 1998)
 - logic (L-analyticity) in grammar (e.g. Gajewski, 2002)
- inference derives from compositionality?
- some logical competence revealed more easily in natural language comprehension than in puzzles and tests
- new empirical terrain: which inferences follow from structure of language?

thank you!

experiment 3 results

- trivial subset: frozen leafy vegetables ≺ leafy vegetables
 entailed ident: leafy vegetables ≺ leafy vegetables
 not ontailed superset: vegetables < leafy vegetables
- not entailed superset: vegetables \prec leafy vegetables

references i

- Agmon, Galit, Yonatan Loewenstein, and Yosef Grodzinsky (2019). "Measuring the cognitive cost of downward monotonicity by controlling for negative polarity". In: *Glossa: A Journal of General Linguistics* 4.1.
- Braine, Martin D. S. and David P. O'Brien (1998). *Mental logic*. Psychology Press.
- Cheng, Patricia W. and Keith J. Holyoak (1985). "Pragmatic Reasoning Schemas". In: *Cognitive Psychology* 17.4, pp. 391–416.
 - Cheng, Patricia W. and Keith J. Holyoak (1989). "On the natural selection of reasoning theories". In: *Cognition*.
- Cheng, Patricia W., Keith J. Holyoak, Richard E. Nisbett, and Lindsay M. Oliver (1986). "Pragmatic versus syntactic approaches to training deductive reasoning". In: *Cognitive Psychology* 18.3, pp. 293–328.

references ii

- De Neys, Wim and Gordon Pennycook (2019). "Logic, fast and slow: Advances in dual-process theorizing". In: *Current Directions in Psychological Science* 28.5, pp. 503–509.
- Deschamps, Isabelle, Galit Agmon, Yonatan Loewenstein, and Yosef Grodzinsky (2015). "The processing of polar quantifiers, and mumerosity perception". In: Cognition 143, pp. 115–128. ISSN: 0010-0277. DOI:

https://doi.org/10.1016/j.cognition.2015.06.006. URL: https://www.sciencedirect.com/science/article/ pii/S0010027715300160.

Evans, Jonathan St. B. T. and Keith E. Stanovich (2013). "Dual-process theories of higher cognition: Advancing the debate". In: *Perspectives on Psychological Science* 8.3, pp. 223–241.

Gajewski, Jon (2002). "L-analyticity and natural language". Manuscript. Cambridge, MA: MIT.

references iii

- Hoeksema, Jack (2012). "On the natural history of negative polarity items". In: *Linguistic Analysis* 38.1/2, pp. 3–33.
 - Kahneman, Daniel (2011). *Thinking, Fast and Slow*. Farrar, Straus and Giroux.
- Ladusaw, William A. (1983). "Logical form and conditions on grammaticality". In: Linguistics and Philosophy 6.3, pp. 373–392.
- Sloman, Steven A. (1993). "Feature-based induction". In: *Cognitive Psychology* 25.2, pp. 231–280.

Wason, Peter C. (1968). "Reasoning about a rule". In: Quarterly Journal of Experimental Psychology 20.3, pp. 273–281.